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J. Phys. A: Math Gen. 17 (1984) 3077-3089. Printed in Great Britain 

Classification and determination of irreducible bases for 
induced representations for chains of subgroups of finite 
groups 

B Lulek and T Lulek 
Institute of Physics, A Mickiewicz University, Poznan, Poland 

Received 16 January 1984 

Abstract. The problem of classification and determination of standard irreducible bases 
for induced presentations of an arbitrary finite group is discussed. A general prescription 
for classification and determination of these bases for an arbitrary induced representation 
is proposed, and an extra independent prescription for the special case of primitive 
representations is given. Relations between appropriate transformation coefficients are 
investigated and, in particular, a matrix similar to the Racah recoupling matrix from theory 
of multiple coupling of angular momenta is introduced. 

1. Introduction 

Transitive permutation representations (transreps) have been recently applied to 
achieve a unique classification of symmetric coordinates for several clusters of material 
points such as molecules, or atomic shells in a crystal (Lulek 1980, Kuima et a1 1980, 
Newman 1981, Chen and Newman 1982, Chan and Newman 1983), finite crystals with 
periodic boundary conditions (‘cyclic regions’ in the terminology of Chan and Newman 
1982), or infinite crystals (Litvin 1982). The key for this application is provided by a 
factorisation of the mechanical representation of a cluster into a permutational factor 
called the positional representation, and a vector one. The positional representation 
is either a transrep describing permutations of identical atoms under symmetry transfor- 
mations of the cluster, or the direct sum of transreps. An irreducible representation 
(irrep) entering the positional representation constitutes an additional classification 
label for the symmetric coordinates of the cluster. 

Newman (1981), and Chen and Newman (1982) have demonstrated that the above 
classification scheme yields a unique classification for some cubic clusters (with the 
coordination z = 6, 8, and 12) but is insufficient for cubic clusters with z = 24 and 48 
because of repetitions of some irreps in the corresponding positional representation. 
These authors have proposed a unique classification for the latter cases using the 
so-called ‘correlation theorem’ (Wilson et a1 1955, p 121), which is essentially a version 
of the well known Frobenius reciprocity theorem for induced representations (indreps) 
(cf e.g. Altmann 1977, p 148). The method relies on using irreps of members of an 
appropriate chain of subgroups as labels for distinguishing the repeated irreps of the 
symmetry group of a cluster in the positional representation. One can put a question 
whether there exists a unique classification of irreps for an arbitrary cluster, or more 
generally, for an arbitrary transrep of a finite group G .  The next question, which is 
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important in quantum applications (e.g. coupling of lattice vibrations with localised 
electrons of paramagnetic ions in crystals-cf e.g. Newman 1981 and references therein, 
or magnetic excitations in crystals, associated with a point impurity-cf Callen and 
Baryakhtar 1973) is a procedure for a determination of states corresponding to such 
a classification and transforming in a standard way according to irreps of the group G. 

From the mathematical point of view it is the aim to consider a more general 
problem: find a unique classification scheme for irreps of a finite group G entering an 
indrep 0 G, where the inducing representation 0 is an arbitrary irrep of an arbitrary 
subgroup H c G. A transrep of G is equivalent to a particular indrep G, where 
0, is the unit irrep of H. Such a generalisation can be also useful in a wide area of 
applications of indreps in physics (cf e.g. Barut and Rqczka 1977, Altmann 1977, and 
references therein). 

The above problem is entirely analogous to that of a classification of irreps 0 of 
a subgroup H c G entering the subduced representation rJ  H, where r is an irrep of 
G. A formal description of the analogy is provided by the Frobenius reciprocity 
theorem, and a procedure for the determination of irreducible bases of an indrep in 
this way is proposed by us elsewhere (Lulek and Lulek 1984). The aim of the present 
paper is a discussion of ways of classification and explicit determination of the 
irreducible bases for an arbitrary indrep 0 T G  of a finite group G, associated with 
possible intermediate subgroups in the chain H c G. Essentially, the classification 
based exclusively on irreps of intermediate subgroups is not always complete (exactly 
as in the case of the state-labelling problem for subduced representation). A complete 
classification can be, however, obtained assuming that the irreducible basis for irreps 
of G, adapted to the chain H c G, is already known. Then different chains of subgroups, 
H c K c G and H c K ' c  G, K # K', give rise to different irreducible bases, and hence 
to linear transformations resembling the famous Racah recoupling matrices from 
angular momentum theory (see e.g. Fano and Racah 1959). In the present work we 
propose a formal description of such transformations. We suppose that it is a necessary 
part of a programme of paving the way to Racah algebra for quantum theory of 
multicentre systems (Newman 1983). 

The paper is organised as follows. In § 2 we give a formulation of the problem, 
which is associated with introducing the principal properties of indreps in the way of 
establishing the notation and terminology. We try to use the notation appropriately 
adjusted to the problem, which, in particular, clearly reflects the structure of sets of 
labels of several basis vectors. In § 3 we discuss the basis classification and determina- 
tion problem for the case of three-member chain H c K c G introducing a quantity 
associated with the structure of imprimitivity blocks for this chain, and bearing an 
analogy to the Racah recoupling matrix. In § 4 we describe an explicit solution of the 
classification and determination problem, basing on the Frobenius reciprocity theorem. 
In § 5 we propose a standard basis equivalent to Yamanochi basis for primitive 
representations, consitituting an important special case of transreps. 

2. The formulation of the problem 

2.1. The notation u s e d f o r  irreps. 

We shall use the following notation associated with a finite group G:  6 is the set of 
all linearly inequivalent irreps r of G, [r] is the dimension of r, and f =  
{ y / y  = 1,2,  . . . , [r]} is the set of labels of a standard orthonormal irreducible basis of 
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r, so that the vectors lry), y E r', span a carrier space for r. In particular, To E 6 is 
the unit irrep of G. 

The corresponding symbols have the same meaning for a subgroup H c G(fi, 0, 
[e], 6, 6, Bo), a subgroup K c  G ( k ,  Z, [Z], 5, 6, Eo), etc. Moreover, for an arbitrary 
finite set A the symbol [AI denotes the number of elements of A, so that e.g. /GI is the 
order of the group G, lpl= Er], etc. 

2.2. The notation for indreps. 

Let 

G =  U grH 
r e d ( G : H )  

be the decomposition of the group G into left cosets with respect to its subgroup H, 
so that {g,lr E I?(G: H)} is the set of arbitrarily chosen, but fixed left coset representa- 
tives. The formula 

defines the transrep RG:H (the ground representation in the terminology of Altmann 
1977, ch lo), acting on the orbit (the homogeneous space) E(G: H). The linear analogue 
of the permutation representation R G z H  is determined by matrices DGtH(x), x E G, with 
elements 

1 if xg, E g,,H, 
0 otherwise, 

r, r ' E  I?(G:H). D y (  x) = (3) 

The set 

(4) = { r-91 r E I? (G : H), 6 E o'} = I? (G : H) x 6, 

where the cross ' X '  denotes the Cartesian product of sets, constitutes the natural basis 
of the indrep OTG of the group G. The corresponding operators D @ ( x ) ,  X E  G, are 
defined by their action on vectors l0f Gr6), ( r 6 )  E B::?, according to a formula 

where Dz,,(h), h E H, 6 ' ~  6, 6 E 6, is the Wigner matrix element of the inducing 
representation 0, and h , ( x ) ~ H  is the subelement of the element X E G  under the 
representative g ,  (cf Altmann 1977, p 133), i.e. the element of H, defined uniquely by 
xg, = g,A,(x), with g,.. being an appropriate representative in the decomposition (1) .  
As a matter of fact, 0 in equations (4)-(5) can be substituted by an arbitrary finite- 
dimensional representation of H (not necessarily an irrep) providing that 6 is the 
corresponding complete set of basis labels for 0. The transrep RGZH is linearly 
equivalent to the indrep @,TG, and 

B;Z:~=I?(G:H), (6) 

G. i.e. the orbit of the transrep RG:H corresponds to the natural basis of the indrep 
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2.3. The irreducible basis of an indrep 

The indrep 0 7 G is, in general, reducible in G .  Let 

where ‘0’ denotes the direct sum, be the decomposition of O T G  into irreps r of G, 
so that n(O t G ,  r) is the multiplicity of r in 0 t G .  Using standard methods of finite 
groups representation theory (cf. e.g. Lyubarskii 1960, 0 26) one can determine the 
standard irreducible basis in a carrier space of OTG. Such a basis can be labelled by 
the elements of the set 

B : : ~  = {rwyir  E 6, w E WO, r), y E rj 

where 

is the set of repetition indices for 
can be written as 

in OTG. Hence, the irreducible basis for OTG 

The problem of determination of the irreducible basis for the indrep 0 t G consists 
in evaluation the matrix be of the transformation (lo),  with rows and columns labelled 
by the natural and irreducible basis, respectively. The problem of classification of 
identical T’s in 0 t G is the first step of the determination problem, and consists in a 
definite choice of sets *(a, r), with r E 6, that is, the choice of the system of repetition 
indices. A solution of the determination problem for the case of a two-member chain 
of subgroups H c G, based on the Frobenius reciprocity theorem, has been given 
elsewhere (Lulek and Lulek 1984, cf § 4). This solution does not exploit, however, the 
intermediate subgroups, which is one of aims of the present paper. The generalisation 
of the problem of a unique classification, investigated by Newman (1981) and Chan 
and Newman (1982), can be now formulated as a question whether it is possible to 
find, for each triad ( G ,  H,O),  such sets *(O,r), r E 6 ,  all elements of which are 
constructed exclusively of irreps E E k for some intermediate sugroups K, so that 
H c  K c  G. 

2.4. The space of intertwining operators 

It has been shown by Edwards (1980), that the classification problem can be nicely 
formulated in terms of a choice of an orthonormal basis in the space Hom,(T, 0 T G )  
of operators which intertwine r with 0 G in the group G, i.e. the linear operators B 
carrying vectors of the carrier space of r into the carrier space of 0 t G and satisfying 
the conditions 

BDr(x)  = D@tG(X)B, X E G .  (11)  
The irreducible basis of 0 t G ,  defined by equations (8)-( 10) is associated with operators 
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with the property 

B,lw = low%), Y E P .  (13) 

Operators B,, w E @(0, r), form a basis in Hom,(T, 0T G), orthonormal with respect 
to the scalar product 

where B,, B2e Hom,(T, @TG). Such a formulation allows for an immediate and full 
use of the Frobenius reciprocity theorem, which will be demonstrated in Q 4. 

3. A three-member chain of subgroups 

Now we consider a three-member chain H c K c G of subgroups. A comparison of 
definitions given by equations ( 2 )  and ( 5 )  yields 

R G : H  = ( R K : H )  TG (15) 

&G:H)  = R ( G : K )  X & K :  H), (16) 

and 

i.e. the transrep RG:H is equivalent to the representation, induced from the transrep 
of the intermediate sub8roup K, and the corresponding orbit is equivalent to the 

Cartesian product of orbits R(G:K)  and I?(K:H), associated with the links of the 
chain. In more detail, the orbit j ( K :  H) of the representation RKIH consists of those 
left cosets of G with respect to H, which constitute the intermediate subgroup K, i.e. 

R K : H  

A comparison of equations (17) and (18) with ( 1 )  yields a natural one-to-one mapping 
+: I ? ( G : K ) x ~ ( K : H ) - , E ? ( G : H ) ,  given by 

+ ( r , ,  r2) = regg,,g,H = g,H. (19) 

The situation described above can be interpreted as such that the intermediate subgroup 
K defines a decomposition of the orbit R(G:H)  into subsets called imprimitivity 
systems (cf e.g. Burnside 191 I ,  p 191 or Hall 1959, Q 5,6) which transform as a whole 
one into another under permutations R G : H ( ~ ) ,  x E G. It can be also described as a 
'coarsening' of the transrep R G : H  to R G z K  (cf a similar situation in a paper of Mucha 
and Lulek 1983). 

Let us now consider a representation which is induced in two stages, i.e. (0 t K) T G. 
The natural basis of this representation, 

~ ~ ? / ~ ) f ~ = { r , r ~ ~ I r , ~  E(G:K) ,  r2€  Z(K:H) ,  8~431 

= ri (G : K) x k ( K : H ) x 43 = B:::, (20) 

is clearly equivalent to the natural basis of @TG, with the mapping of elements 
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determined by CF, of equation (19). The irreducible basis can be obtained using (10) 
twice: first for the link H c K, and then for K c G, so that 

B : : T ~ ’ ~ ~  = { r ~ w ~ w ~ ~ ( r  E 6, z E R, w1 E +(E:, r), W ~ E  +(a, E), y E PI 

where 

is the set determining the system of repetitions of r in (at K)TG. It is evident that 
the problem of unique classification of r in 0 t G by means of irreps E has a solution 
only when there exists such an intermediate subgroup K that 

I+(@,E) lS  1, I +(E:, r)/ s 1 VE E R, (23) 

i.e. each of these sets contains not more than one element. When one of these conditions 
is not fulfilled, say I %‘(a, Z)l= 1 but 16’(E, r)l> 1, then one can look for a new 
intermediate subgroup KI,  so that H c K c  KI  c G, consider a three-stage induction 
((0 t K) t K , )  t G etc, ending either on a satisfactory solution, or on exhaustion of the 
set of possible subgroups. If there exists a solution for a given chain H c  KI  c 
. . . c K f c  G, then the corresponding set of labels can be written as 

+HCK, ,  = K , = G ( a ,  r) = { Z I Z ~ .  . . = ~ I S ~  E RI>, 
n ( O t K ,  E l )  = n(Zf.TG, r) = 1, 

(24) 

If there is no solution, then for each chain of subgroups, linking H with G there exists 
such a two-member subchain K,-, c K, and such r E  6 that K,-, is maximal in K, 
(that is, that there is no non-trivial intermediate subgroup between K,-I and K,, cf 
Hall 1959, § 5.6),  and n(Z,- l  t K,, S , )  > 1 for a pair Z,), El-l  E K1-,, S I  E K,. It 
turns out that the solution of the form (24) does not always exist. A counter example 
is provided by the case G = K, the group of rotations of a regular icosahedron, H = D3 
(a dihedral point group), and 0 = E  (the two-dimensional irrep of D3). We have 
E t K = TI 0 T20  U 0 2 V (  TI, T2, U, V E k), and the repetition of V E k in E K cannot 
be resolved by means of any intermediate subgroup since D3 is maximal in K (notation 
for the irreps of the icosahedral group K is given from Griffith 1964). Nevertheless, 
for a very important family consisting of the primitive representations, i.e. the transreps 
RG for which H is maximal in G, the solution does exist. It will be considered in 8 5 .  

Vectors of the irreducible basis (21) of (et K) t G can be expressed in terms of the 
natural basis (20) as 

- -  
n(E,-l t K,, El)  = 1 for i = 1,2, . . , ,$ 

I * 

I ( @ ? K ) ? G ~ = W , W ~ Y )  

where 
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It follows from (26) (and the fact that (0TK)TG is linearly equivalent to OTG) that 
the knowledge of irreducible bases for each link of the chain H c K c  G allows us to 
determine an irreducible basis for the carrier space of 0 f G by immediate induction. 
The bases B:jG and Bf:TK”G, however, do not necessarily coincide since the choice 
of sets $(@, r), l- E 6 (equation (10)) is a priori independent of the construction of 
the sets $K(O, r), r E  6 (equation (22)). In general, we have 

where the coefficients Qw,Hwlw2(0, r) are independent of the indices of bases r l ,  r2, 6, 
y,  and form a unitary matrix Q ( 0 ,  r), describing the linear transformation between 
two systems of repetition indices for r in 0 T G, characterised by B ~ ~ ’ l o T G  and 
The coefficients Qw,swlw2(0,r) play here a role similar to Racah recoupling matrices 
for a change in sequence of coupling of several angular momenta (cf e.g. Fano and 
Racah 1959, cf also Wybourne 1974 § 19.11 for some generalisations), to isoscalar 
factors associated with Racah’s lemma (Racah 1949, cf also Wybourne 1974, § 19.15), 
or to Derome-Sharp matrices associated with the permutational symmetry of Clebsch- 
Gordan coefficients (Derome and Sharp 1965, Derome 1966, cf also Chatterjee and 
Lulek 1982, Mucha and Lulek 1983). 

Using the orthogonality properties of matrices be one can obtain from (27) a direct 
expression for QW,3WIW2(0,  r), namely 

where W E  I@(@, r), (ZW,W,)E GK(@,r). The dependence of the right-hand side of 
(28) on y is apparent for the reason of Schur’s lemma. In fact, the coefficients 
Qw,Hwlw2(0, r) are values of some scalar products in the space Hom,(T, @TG), namely 

Q w , Z w 1 w 2 ( @ ,  = ( B w ,  BSWIW2), (29) 
where B, and BEwlw2 are intertwining operators defined according to equation (12). 

4. The classification based on the Frobenius reciprocity theorem 

Now we are going to discuss a particular system of classification of irreps of an indrep, 
related to the known Frobenius reciprocity theorem (cf e.g. Altmann 1977, p 148). Let 
r?  H be the subduced representation, and let 

be its decomposition into irreps of H, and let 

t(r, e) = { V / D  = i , 2 , ,  . . , n ( r J  H, 0)) (31) 

be the set determining the system of repetition indices of 0 E fi in rJ H ,  so that the 
vectors 

/ ~ J . H @ u ~ ) =  C a:&,Iry) (32) 
Y€i. 

with 0 E 6, v E c(r, 01, 6 E 6, constitute an orthonormal standard complete basis in 
a carrier space of the representation I‘. Then, as we have shown elsewhere (Lulek and 
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Lulek 1984), one can choose the system of repetition indices of r in OTG putting 

%(a, r) = ?(r, 0) (33)  

for each r E 6, so that the elements of the corresponding matrix b' ( 1 1 ) have the form 

The formulae (33)-(34) express in fact a generalisation of the Frobenius reciprocity 
theorem 

n(@TG,r)= n(TLH,@), r d ,  o&, (35) 

on the level of irreducible bases, similarly as in the paper of Edwards (1980). 
Equations (33 )  and (34)  provide, respectively, a solution of the problem of classifica- 

tion and determination of the irreducible bases of the indrep 0 t G, 0 E fi for the chain 
H c G under the assumption that both problems for the subduced representations 
r J H ,  r e 6  are already solved, i.e. that the sets ?(r, 0) and bases (32) are known. 
At this point it is worth observing that the repetition indices U E c(r, 0) originate 
essentially from the set of basis functions of r, adapted to the chain H c G ,  where 
y E is replaced by Ova, 0 E I?, U E ?(r, e) ,  6 E 6. It is especially clear for the case 
of the regular representations 

Dreg z DG { e }  eo, t G, (36) 

+(eoe, r) = ?(r, 0~ = F, 
where eo, is the unit irrep of the group {e}, since we have 

(37)  

as a direct result of the well known decomposition of the group algebra into matrix 
units (cf e.g. Matsen 1975). 

We proceed to evaluate the matrices Q ( 0 ,  r), defined by (27) for the case when 
both systems of repetition indices are associated with the Frobenius reciprocity theorem, 
applied to two three-member chains of subgroups: H = K c  G and H = K'= G. One 
can substantially simplify awkward calculations based on (28), using (29) and the 
Frobenius reciprocity theorem at the level of bases (Edwards 1980). For this purpose 
we introduce, in an analogy to D 2.4, the space HomH(r& H, 0) of operators which 
intertwine r .1 H with 0 in the group H, i.e. such linear operators A which carry the 
vectors of a carrier space of r into a carrier space of 0 and satisfy the conditions 

ADf(  h )  = De( h)A,  h E H. (38)  

Vectors (32) correspond in this space to operators 

with the property 

A,IT@u6) = IOS), 6 E 6 .  (40)  

Vectors A, U E  q(r, 0) constitute a basis in H o m H ( r i H ,  e), which is orthonormal 
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with respect to the scalar product 

where AI,  A2e  HOmH(r&H, 0). 
The Frobenius reciprocity theorem, given by (35), can be also formulated at the 

level of irreducible bases as follows (Naimark 1976 11.4.3, cf also Edwards (1980) and 
references given therein): there exists such an isomorphism 

X :  Hom,(T, @fG)+HOm,(r&H, 0) (42) 

between both spaces of intertwining operators which is a linear mapping satisfying 
the conditions 

4 B U )  =A,  U E f+r, o), (43) 
(so that bases l0TGTvy) and l IX3v4) are mutually reciprocal in the terminology of 
Edwards 1980) and 

( x ( B , ) ,  4B2) )  = (4, B2), BI, B2E Hom&, @TG), (44) 

where the scalar products of the left- and right-hand side are given by equations (14) 
and (41), respectively. The operator x ( B )  E HomH(TiH, a), with B E  Hom,(r, OTG) 
is then defined by the formula 

where 1 is an arbitrary vector of the carrier space of r (so that BI is an element of the 
carrier space of OTG), and the carrier space of OTG is realised in a standard way as 
the space of functions on the group G with the values in the carrier space of 0 satisfying 
the conditions D@(h)(Bl)(g) = (Bl)(gh-’) for each h E H (so that ([0]/[r])”2(B1)(g) 
is an element of the carrier space of 0). 

The formulae (42)-(45) for the isomorphism x agree with the corresponding 
formulae of Edwards (1980) after appropriate changes in notation and taking into 
account both the change of the ‘direction of twinning’ (he used HomH(O, rJ H) instead 
of our HomH(r iH ,@))  and the change of the direction of arrow in equation (42); 
the definitions (1)-(5), associated with the realisation of the homogeneous space 
i ( G  : H) on left (not right!) cosets remain the same in both papers. Using equations 
(43) and (44) we obtain from (29) 

QHlJ,o*.9’u;ui(@, = AE‘uIoi), (46) 
where the scalar product is related to the space HomH(r&H, 0). Using equations (39) 
and (32) for appropriate chains of subgroups we finally obtain 

We finish this section with an example of the matrix Q for the case of chains of point 
groups 0 3 D4 2 C; and 0 3 D3 2 C;, where 0 is the group of rotations of a cube, and 
C; = { E ,  U}, with E and U being the unit element and the two-fold rotation around 
the axis e, - ey in the Cartesian system of four-fold axes of the cube. The principal 
axes of the dihedral groups D4 and D3 are oriented along vectors e, and e, + ey + e,, 
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respectively. The decomposition matrices a (equation (32)) for the chains D 4 c  0, 
D3 c 0 are given in Griffith (1964, table A 17), and we take a; = 1 for one-dimensional 
representations 5 of D, and D3, [EA) = 2-”*(IEx)- IEy)), IEB) = 2-”2(IEx) +lEy)) ,  
and IEA) = IEO), IEB) = 11%) for two-dimensional representation Z = E in the group 
D4 and D3, respectively (the representation and basis functions for 0, D4 and D3 are 
labelled according to Griffith 1964, and A and B is the unit and antisymmetric irrep 
of C;, respectively). With this notation and conventions, the indreps OTO of the group 
C; have the form 

AT 0 = A ,  O EO T ,  0 2 T 2  

B T 0 = A2 O E @ 2 TI O TI,  

and a complete classification of repeated irreps ( T2 in AT 0 and TI in B t 0) is fully 
provided by a representation 5 of each of the intermediate subgroup, D4 and D3. In 
table 1 we give the decomposition coefficients for the chain Ck c 0 for r = T ,  and T2, 
evaluated by equation (32) in two steps for both three-member chains. The matrices 
Q ( B ,  TI) and Q ( A ,  T J ,  evaluated by equation (47), are listed in table 2. 

5. Primitive representations 

It is difficult to derive general analytic formulae for irreducible bases of an arbitrary 
indrep 0 t G, for the reason of an arbitrariness in choice of the systems of repetition 
indices for the corresponding subduced representations I‘J H. It can be done, however, 
in an important special case of primitive representations. It is well known (cf e.g. Hall 
1959, Theorem 16.6.15), that the decomposition (7) for a primitive representation RG:H 
has the simple form 

H maximal in G. (48) 
R G : H  - - O,TG = Toor, 

Table 1. The decomposition coefficients a!& for three-dimensional irreps of the group 0 
(r = T, ,  T,) for the chains Ci  c K c  0, K = D,, D,. 

K =  D, 

7,JCS 0 A B T23.c; 0 A B 

Y E E  A, E Y E B,  E E 

X l / \ j  0 l / \ j  X 0 l / v J  I / \  2 
Y - 1 / v 2  0 l / \ 2  Y 0 l / v 2  - I/A 

- - 

Z 0 1 0  Z 1 0  0 

K =  D, 

T , JC i  0 A B T*Ic; 0 A B 

Y S E  A? E Y E A,  E E 

X 

Y 
Z 
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Table 2. Two-dimensional matrices Q ( 0 ,  r) for the chain C; c 0. E and E' denote the irreps 
of D, and D,, respectively. 

\, E' 
Q ( B ,  T , ) =  E \ A2 E 

Evidently, the carrier space of To is spanned on the vector 
1/2 

/@,? GTo) = (p) Gr),  (49) 

l @ , ? G r , ) = [ j ( j -  l ) ] ' ' 2 ( J i  r=  I l@oTGr) - ( j -  l)l@oTGj)), 

GI r t R ( G  H) 

and the orthogonal completion in the carrier space of D@ofG is the carrier space of r, 
where the basis can be chosen arbitrarily. A simple universal choice is given by the 
formula 

(50 )  

where j~ I?(G: H), j # 1. Evidently, each representation r E  6, associated with a 
maximal subgroup of the group G by equation (48), has an orthonormal irreducible 
basis labelled by the elements of the orbit k ( G  : H) with the exception of element r = 1, 
i.e. 

f = k ( ~ :  ~ ) \ { i ) .  (51) 

It is easy to observe that the basis (49)-(50) coincides with the standard Yamanauchi 
basis (cf e.g. Hamermesh 1962) for the irreps entering the primitive representation 
decomposition 

R t ~ ' Z ~ - ~ = { N } O { N -  1, 1) (52) 

of the symmetric group EN, where N =  lGl/lHl, and {N} and { N -  1, 1) are Young 
diagrams labelling irreps of EN. 

6. Final remarks and conclusions 

We have considered the problem of classification and determination of irreducible 
bases of indreps of finite groups. Using the results of another of our papers (Lulek 
and Lulek 1984) we have proposed a universal classification originated from the 
Frobenius reciprocity theorem on the level of bases (Edwards 1980), assuming the 
knowledge of irreducible bases for subduced representations. Such a classification 
uses, in fact, the labels of irreducible bases adapted to a chain of subgroups to 
distinguish the repeated irreps. 
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We have also discussed in general the problem of classification for a three-member 
chain of subgroups assuming that this problem for each link of the chain is already 
known. We have proposed the form of some matrices Q (equation (27)) which describe 
the linear transformation between two systems of repetition indices for such chains and 
are analogues of Racah recoupling matrices in angular momentum theory. We gave 
general formulae (28) and (29) for elements of these matrices. Moreover, for the case 
of classification based on the Frobenius reciprocity theorem for two chains H c K c  G 
and H c K ' c  G, we expressed these coefficients in terms of decomposition coefficients 
for appropriate subduced representations (equations (46)-(47)), using the notion of 
reciprocal basis sets introduced by Edwards (1980). 

If a subgroup H is maximal in G, it is difficult to propose any general classification 
scheme in cases when the multiplicity of r in 0 t G is larger than one. Nevertheless, 
we have discussed a special case of primitive representations, where not only a unique 
classification exists provided by equation (48), but also universal prescription for the 
determination of some standard bases of irreps, coinciding with the Yamanouchi basis 
for the irrep { N - 1, 1) of the symmetric group EN, can be proposed. 

From the mathematical point of view, it proved to be a useful extension of transreps, 
suggested by direct physical applications, into indreps since it assures completeness 
of the formalism. For example, the matrices b@O, determining the irreducible basis for 
the transrep RG:" for the chain H c K c  G can be expressed, according to equation 
(26) by matrices b', where, in general, E # Eo, thus by matrices corresponding to some 
indreps for the chain K c G, and not only to the transrep RGzK = Eo? G. 

The structure of the set of the natural basis of an indrep for a three-member chain 
of subgroups (equations (15)-(20)) was known in mathematics a long time ago (cf e.g. 
Burnside 191 1, p 19 1 ). It was rediscovered in quantum chemistry (cf Wilson et a1 1955, 
p 12 1 )  as the so-called 'correlation theorem', constituting essentially the Frobenius 
reciprocity theorem, modified for the case when the inducing representation is a 
permutation representation of a subgroup H c G. 
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